Interior Methods for Mathematical Programs with Complementarity Constraints

نویسندگان

  • Sven Leyffer
  • Gabriel López-Calva
  • Jorge Nocedal
چکیده

This paper studies theoretical and practical properties of interior-penalty methods for mathematical programs with complementarity constraints. A framework for implementing these methods is presented, and the need for adaptive penalty update strategies is motivated with examples. The algorithm is shown to be globally convergent to strongly stationary points, under standard assumptions. These results are then extended to an interior-relaxation approach. Superlinear convergence to strongly stationary points is also established. Two strategies for updating the penalty parameter are proposed, and their efficiency and robustness are studied on an extensive collection of test problems.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Interior Point Method for Mathematical Programs with Complementarity Constraints (MPCCs)

Interior point methods for nonlinear programs (NLP) are adapted for solution of mathematical programs with complementarity constraints (MPCCs). The constraints of the MPCC are suitably relaxed so as to guarantee a strictly feasible interior for the inequality constraints. The standard primal-dual algorithm has been adapted with a modified step calculation. The algorithm is shown to be superline...

متن کامل

An ` 1 Elastic Interior - Point Methods for Mathematical Programs with Complementarity Constraints

We propose an interior-point algorithm based on an elastic formulation of the `1-penalty merit function for mathematical programs with complementarity constraints. The method generalizes that of Gould, Orban, and Toint (2003) and naturally converges to a strongly stationary point or delivers a certificate of degeneracy without recourse to second-order intermediate solutions. Remarkably, the met...

متن کامل

Interior-Point Algorithms, Penalty Methods and Equilibrium Problems

In this paper we consider the question of solving equilibrium problems—formulated as complementarity problems and, more generally, mathematical programs with equilibrium constraints (MPEC’s)—as nonlinear programs, using an interior-point approach. These problems pose theoretical difficulties for nonlinear solvers, including interior-point methods. We examine the use of penalty methods to get ar...

متن کامل

An interior-point algorithm for $P_{ast}(kappa)$-linear complementarity problem based on a new trigonometric kernel function

In this paper, an interior-point algorithm  for $P_{ast}(kappa)$-Linear Complementarity Problem (LCP) based on a new parametric trigonometric kernel function is proposed. By applying strictly feasible starting point condition and using some simple analysis tools, we prove that our algorithm has $O((1+2kappa)sqrt{n} log nlogfrac{n}{epsilon})$ iteration bound for large-update methods, which coinc...

متن کامل

The penalty interior-point method fails to converge

Equilibrium equations in the form of complementarity conditions often appear as constraints in optimization problems. Problems of this type are commonly referred to as mathematical programs with complementarity constraints (MPCCs). A popular method for solving MPCCs is the penalty interior-point algorithm (PIPA). This paper presents a small example for which PIPA converges to a nonstationary po...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • SIAM Journal on Optimization

دوره 17  شماره 

صفحات  -

تاریخ انتشار 2006